Fizik Time

Online Özel Ders

Fizik Time

Online Özel Ders

Altın Oran

Altın oran, matematikte iki miktardan büyük olanın küçüğe oranı, miktarların toplamının miktarların büyük olanına oranı ile aynı ise altın orandır.

Bir doğru parçasının |AB| altın oran’a uygun biçimde iki parçaya bölünmesi gerektiğinde, bu doğru öyle bir noktadan (C) bölünmelidir ki; küçük parçanın |AC| büyük parçaya |CB| oranı, büyük parçanın |CB| bütün doğruya |AB| oranına eşit olsun.

Altın oran, pi (π) gibi irrasyonel bir sayıdır ve ondalık sistemde yazılışı; 1,618033988749894…’tür. -noktadan sonraki ilk 15 basamak- Bu oranın kısaca gösterimi: {\displaystyle {\frac {1+{\sqrt {5}}}{2}}} dir. altın oranın ifade edilmesi için kullanılan sembol, Fi yani φ’dir.

İlk olarak kimler tarafından keşfedildiği bilinmese de, Mısırlılar’ın ve Yunanlılar’ın bu konu üzerinde yapmış oldukları bazı çalışmalar olduğu görülmektedir. Öklid, milattan önce 300′lü yıllarda yazdığı “elementler” adlı tezinde “ekstrem ve önemli oranda bölmek” olarak altın oranı ifade etmiştir. Mısırlıların Keops Piramidinde, Leonardo da Vinci’nin “İlahi Oran” adlı çalışmada sunduğu resimlerde  kullanıldığı bilinen “altın oran” , “Fibonacci Sayıları” olarak da bilinmektedir.

Orta Çağ’ın en ünlü matematikçisi olan İtalyan kökenli Leonardo Fibonacci, birbiri arasında ardışık ilişki ve olağanüstü bir oran bulunduğunu iddia ettiği sayıları keşfetmiş ya da diğer bir görüşe göre de Hint-Arap medeniyetinden öğrenmiş ve Avrupa’ya taşımıştır. Evrendeki muhteşem düzenle birebir örtüşen bu sayıları keşfetmesi nedeniyle, altın orana da adının ilk iki harfi olan “Fi” (Φ) sayısı denilmiştir. 

Bir yapı ya da sanat eserinin altın orana yakınlığı, onun aynı zamanda estetik olarak güzelliğinin bir ölçüsü olarak kabul görmüştür.

Bir doğru parçasının (AC) Altın Oran’a uygun biçimde iki parçaya bölünmesi gerektiğinde, bu doğru öyle bir noktadan (B) bölünmelidir ki;  küçük parçanın (AB) büyük parçaya (BC) oranı, büyük parçanın (BC) bütün doğruya (AC) oranına eşit olsun. 

Bildiğimiz gibi matematikte 3.14 sayısına karşılık gelen ve bir dairenin çevresinin çapına bölünmesiyle elde edilen sayıya Pİ (∏) sayısı denir. Aynı Pİ sayısı gibi altın oran da matematikte 1.618 e eşit olan sayıya denir ve Fi(φ) simgesiyle gösterilir ve ondalık sistemde yazılışı; 1,618033988749894…’tür. 

Altın Oran

Bir yanıt yazın

Başa dön